Multivariate Beta Regression with Application in Small Area Estimation
نویسندگان
چکیده
منابع مشابه
Some New Developments in Small Area Estimation
Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...
متن کاملLocal Polynomial Regression for Small Area Estimation
Estimation of small area means in the presence of area level auxiliary information is considered. A class of estimators based on local polynomial regression is proposed. The assumptions on the area level regression are considerably weaker than standard small area models. Both the small area mean functions and the between area variance function are modeled as smooth functions of area level covar...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملMultivariate Fay-Herriot models for small area estimation
Introduction Multivariate Fay–Herriot models for estimating small area indicators are introduced. Among the available procedures for fitting linear mixed models, the residual maximum likelihood (REML) is employed. The empirical best predictor (EBLUP) of the vector of area means is derived. An approximation to the matrix of mean squared crossed prediction errors (MSE) is given and four MSE estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Official Statistics
سال: 2016
ISSN: 2001-7367
DOI: 10.1515/jos-2016-0038